Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Platelets ; 35(1): 2313359, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38353233

RESUMO

Cyclic guanosine monophosphate (cGMP) is a second messenger produced by the NO-sensitive guanylyl cyclase (NO-GC). The NO-GC/cGMP pathway in platelets has been extensively studied. However, its role in regulating the biomechanical properties of platelets has not yet been addressed and remains unknown. We therefore investigated the stiffness of living platelets after treatment with the NO-GC stimulator riociguat or the NO-GC activator cinaciguat using scanning ion conductance microscopy (SICM). Stimulation of human and murine platelets with cGMP-modulating drugs decreased cellular stiffness and downregulated P-selectin, a marker for platelet activation. We also quantified changes in platelet shape using deep learning-based platelet morphometry, finding that platelets become more circular upon treatment with cGMP-modulating drugs. To test for clinical applicability of NO-GC stimulators in the context of increased thrombogenicity risk, we investigated the effect of riociguat on platelets from human immunodeficiency virus (HIV)-positive patients taking abacavir sulfate (ABC)-containing regimens. Our results corroborate a functional role of the NO-GC/cGMP pathway in platelet biomechanics, indicating that biomechanical properties such as stiffness or shape could be used as novel biomarkers in clinical research.


Increased platelet activation and development of thrombosis has been linked to a dysfunctional NO-GC/cGMP signaling pathway. How this pathway affects platelet stiffness, however, has not been studied yet. For the first time, we used novel microscopy techniques to investigate stiffness and shape of platelets in human and murine blood samples treated with cGMP modifying drugs. Stiffness contains information about biomechanical properties of the cytoskeleton, and shape quantifies the spreading behavior of platelets. We showed that the NO-GC/cGMP signaling pathway affects platelet stiffness, shape, and activation in human and murine blood. HIV-positive patients are often treated with medication that may disrupt the NO-GC/cGMP signaling pathway, leading to increased cardiovascular risk. We showed that treatment with cGMP-modifying drugs altered platelet shape and aggregation in blood from HIV-negative volunteers but not from HIV-positive patients treated with medication. Our study suggests that platelet stiffness and shape can be biomarkers for estimating cardiovascular risk.


Assuntos
Plaquetas , Transdução de Sinais , Humanos , Camundongos , Animais , Fenômenos Biomecânicos , Plaquetas/metabolismo , Guanilato Ciclase/metabolismo , Guanilato Ciclase/farmacologia , Ativação Plaquetária , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Óxido Nítrico/metabolismo , Agregação Plaquetária
2.
Cancers (Basel) ; 12(5)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365590

RESUMO

The Warthin tumor represents the second most frequent benign tumor of the parotid gland and is characterized by the presence of oncocytes rich in structurally and functionally altered mitochondria. Next to its role in metabolism, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is also implicated in cellular mitophagy. Immunohistochemistry was carried out on Warthin tumor and normal control (parotid gland with striated ducts) tissues, using anti-GAPDH specific antibodies followed by digital image analysis. Laser capture microdissection was used to isolate the oncocytic tumor cell and normal control striated duct compartments for RNA extraction and qPCR. Warthin tumor oncocytes exhibited a markedly spotted GAPDH staining pattern exhibiting cells with cytoplasmic and nuclear, only nuclear or none GAPDH staining. A significantly lower (p < 0.0001) total GAPDH signal was detected in Warthin tumor oncocytes. Similarly, significantly lower (p < 0.005) GAPDH mRNA levels were seen in oncocytes compared with normal ductal cells. To exclude the possibility of this GAPDH staining pattern being a general feature of oncocytic neoplasms of different organs, we tested a cohort of renal oncocytoma and oncocytic chromophobe carcinoma; none showed this type of staining. The observed progressive GAPDH loss in Warthin tumor oncocytes could be implicated in the pathogenesis of Warthin tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...